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About Thermodynamics

Gordon Skorstad and Ken Forbus
Qualitative Reasoning Group

Beckman Institute, University of nlinois

Abstract: One goal of qualitative physics is to capture the mental models of engineers and scien-

tists. This paper shows how Qualitative Process theory can be used to express concepts of engineer-

ing thermodynamics. This encoding provides the means to integrate qualitative and quantitative

knowledge for solving textbook thermodynamics problems. These ideas have been implemented in

a program called SCHISM, which analyzes thermodynamic cycles, such as gas turbine plants and

steam power plants. We describe its analysis of a sample textbook problem and discuss our plans
for future work.

1 INTRODUCTION

A goalofqualitativephysicsisto capture the tacitknowledge engineersuse to organizeand control

knowledge gained through formal training.The initialmotivation for qualitativephysicswas to

set up and guide the solutionof textbook motion problems [6].Since then, researchhas mainly

focusedon purelyqualitativereasoning[21,and significantprogresshas been made. We believethe

time isrightto begin exploringthe integrationofqualitativeand quantitativereasoningagain.In

particular,our long-rangegoalisto develop a system which can automaticallyperform engineering

analysesofthermodynamic systems ina human-like way. This paper describesour firststeptowards

that goal.

Studiesoftextbook problem solvinghave tended tofocuson quantitativereasoning[1,4,14,15].We

begin instead with the view that qualitativemodels are the startingpoint for the accumulation

and use of more sophisticated,quantitativemodels. This view iswidely held in the mental models

literature[II],and widely but lessformally in the engineeringcommunity [16,17].In problem-

solving,the analysisbegins by constructinga qualitativeunderstanding of the situation.This

initialunderstanding providesthe framework forfurtheranalyses,such as derivingand solvingsets

of equations.Developing a correctqualitativeunderstanding of the problem isessentialto solving

complex problems. Qualitativephysicsshould providethe foundation fora more complete,formal

account ofhuman mental models, includinghow qualitativeand quantitativeknowledge interact.

This paper shows how QualitativeProcess theory [8]can be used to encode fundamental concepts

ofengineeringthermodynamics. This qualitativeknowledge isused forproblem solvinginseveral

ways. Qualitativesimulationis used to verifythat questionsmake sense by ensuring that the

behavior mentioned can actuallyoccur. The simulationalsoprovides a framework for extracting

equations.For example, heuristicsforchoosingappropriatecontrolvolumes are based on qualitative

criteria.We have testedthese ideas through implementation in a program calledSCHISM, which

solvestextbook thermodynamics problems involvingcycles.

The next sectionshows how a setof fundamental thermodynamic concepts can be encoded in QP

theory.Section 3 describeshow thisencoding can be used as a basisforequation extractionand
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quantitative analysis.Section4 describesSCHISM. Lastly,Section5 demonstrates our ideaswith

an example of SCHISM analyzingthe efficiencyofa simple steam plant.

2 QP THEORY AND THERMODYNAMICS

Thermodynamics deals with transformations of energy from one form to another. The notion of

process is central to thermodynamics, hence QP theory should be well-suited for representing it.

Here we show how the following fundamental concepts of thermodynamics can be expressed in

QP theory: control volumes, closed cycles, equilibrium, steady state, phase changes, special pro-

cesses, and point and path quantities.

2.1 CONTROL VOLUMES

Every thermodynamic analysis starts by partitioning the universe into a system or control volume

and its surroundings. A system is any macroscopic object or region of space selected for analysis.

Systems are divided into three classes: open, closed and isolated. Open systems (such as the human

body) exchange matter with their surroundings. Closed systems (e.g., the coolant in a refrigerator)

allow energy but not matter to be exchanged with their surroundings. Isolated systems exchange

neither mass nor energy with their surroundings.

Control volumes ina QP model correspondto individualswith the quantityvolume, and contiguous

collectionsof such individuals.The contained stuffontology [12],used in our model, provides a

natural partioningof an apparatus intomacroscopic controlvolumes. =The coolant in the room

coilsof the refrigerator"isan example ofa containedstuff.Our Molecular Collection(MC)ontology

[5],which followsan infinitesimalpiece of fluidthrough an apparatus, provides another useful

controlvolume. An MC may be viewed as a closedcontrolvolume since'itsmass does not change.

The MC controlvolume letsus describepropertiesof a fluidat a point inspace.

In QP theory, open control volumes are easily identified as those which take part in some process

that causesa mass transfer(such as llquld-flow or boiling). Closed controlvolumes are those

which are not open but which participatein some work or heat transfer.Heat transferand work

transferare indicatedby participationinaheat-f low orwork-_ low process,respectively.A control

volume isisolatedifitdoes not participatein mass, work, or heat transfers.

2.2 CLOSED CYCLES

An important class of thermodynamic systems are closed cycles. In such systems, fluid continuously

passes around a closed loop. Closed cycles are of great practical importance since they form the

basis of heating, cooling and power generation systems. Indeed, whole books are written about

the analysis of such systems [13]. Closed cycles are the first class of systems we have chosen for

automated analysisby SCHISM.
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The MC ontology providesa simple way to detectclosedcycles,sincea closedcycledirectlyCorre-

sponds to a cyclein the MC envisionment.RecognizingclosedcyclesallowsSCHISM to selectstates

of the envisionment that have the intended behavior as candidatesforfurtheranalysis.(This also

allowsSCHISM to rejectquestionsabout impossiblebehaviors.)

2.3 PHASE CHANGES

Many engineering systems, such as refrigerators and steam plants, rely on phase changes to operate.

These phase changes are modelled as processes in QP theory. SCHISM includes a model of boiling

and of condensation. Unlike previous models, these processes include the thermal effects of mixing

in the destination gas for boiling and the destination liquid for condensation.

2.4 EQUILIBRIUM

Equilibrium is the absence of certain processes acting. It is important enough to be explicitly

represented, so we use views whose quantity conditions are the equality of driving forces. For

example, the following view is active whenever two objects with a connecting heat path have the

same temperature:

(defvlew (l"naraal-Equtltbrltm ?ere ?_t ?path)
Individuals ((?ere :conditions (quantity (Temperature ?=r¢)))

(?dat :conditions (Quantity (Temperature ?det)))

(?path :¢ondlttona (heat-path ?path)

(path-to ?path ?sr¢ ?dst)))

Precondition| ((Heat-aligned ?path))

QuantttyCondttlonl ((equal-to (A (temperature ?sr¢))

(A (temperature ?det)))))

2.5 STEADY STATE

Another vital concept in thermodynamics is steady state. An apparatus is said to be in steady state

when all point properties are constant with respect to time. This is the normal mode of operation

for continuous flow processes. For example, when your kitchen refrigerator is running continuously,

the temperature of the coolant at any point along the room coils is constant. Engineering analyses

of thermodynamic cycles focus on steady state behavior.

In the QP model, a steady state system is indicated when all time derivatives of point properties

are zero. When performing a steady-state analysis, these derivative constraints are added to QPE's

scenario model so that only steady-state behaviors are envisioned I. If the envisionment is empty

under this constraint, steady state behavior is impossible given the qualitative description of the

system. Sometimes there is more than one steady state behavior (for example, the same apparatus

IQPE is an envisioner for QP theory. For det&ik see [9].
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could be used as a gas turbinepower plantor an aircyclerefrigerator,depending on drivingcondi-

tions).Ifthereismore than one steady-statebehavior,teleologyisused to selectthe appropriate

stateforfurtheranalysis.

:3.6 SPECIAL PROCESSES

Quantitative analyses of closedsystems are greatlysimplifiedwhen processesdrive parameters

through particulartrajectoriesin statespace. Thermodynamic analysesoften approximate real

systems by assuming processesfollowsuch trajectories.These approximations include:

- constant volume, or isometric

- constant pressure,or isobaric

- constant temperature,or isothermal

. adiabatic,ie.,no heat flowcrossesthe system boundary.

For example, boilingisgenerallyapproximated as an isothermalprocess.These exact distinctions

can be drawn about the processesin the QP model. Isometric,isobaric,and isothermalprocesses

can be recognizedby noting the sign of the appropriatederivative.Adiabatic processescan be

recognizedby the absence of _ctiveheat flow processesbetween the system and itsenvironment.

2.7 POINT AND PATH QUANTITIES

Thermodynamics distinguishesbetween path-independentand path.dependent parameters. Path-

independent parameters,alsoknown as pointpropertiesor state/unctionsof a substance,include

temperature, pressure and volume. Theycan be determined directlyfrom the currentvaluesof

other parameters. For example, fixingthe pressureand volume of a gas uniquely determines its

temperature. Path-dependent parameters (oftencalledgabsoluteflows')are integralsofflowrates.

Examples includework, mass flow,and heat flow.Computing path-dependent parameters requires

histories.For example, the amount ofwork requiredto compress a gas from state$I to Sz depends

on how the compression isdone. Compression may occur isothermally,adiabaticallyor along some

arbitrarypath.

Path-independent parameters are always explicitpropertiesof individualsin the QP domain

model. Flow rates are always explicitpropertiesof processesin the QP domain model (e.g.,

mass-flow-rate, heat-flow-rate). Since SCHISM currentlyfocuses on steady-stateproblems,

we have not yet implemented path-dependent properties.

3 EXTRACTING EQUATIONS

The interaction of qualitative and quantitative reasoning used in classical thermodynamic analyses

is common in the interdisciplinary field called mathematical modelling. Experts in the field regard

math modelling as something of an art [16]:
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"It should now be apparent that an understanding of the scientific motivation of

the problem and the ability to use heuristic reasoning, as well as manipulative skill, are

essential to the practice of applied mathematics. _

We claim mathematical modelling of physical phenomena begins with a qualitative model. Equa-

tions are extracted from the qualitative model until a tractable closed set is obtained. A closed set

of equations is a set of n independent equations that contains n or fewer unknowns. If the equations

are intractable, simplifying assumptions may be added to the qualitative model. An example of a

simplifying assumption in thermodynamics is adiabaticity of a process.

The equations which can be extracted from a model can be divided into three classes. Domain

principles P include fundamental laws and empirical correlations such as conservation of mass and

equations of state. Domain definitions D introduce new quantities by defining them in terms of

existing ones. An example is the efficiency of a system behaving as a heat engine, which is defined

to be the rate of work flowing into the system divided by the rate of work flowing out. Qualitative

identities I are equations that are derivable directly from relations in the qualitative model. For

example, the qualitative model of a dammed river at steady state will include the relation that the

flow rate of water into the lake equals the flow rate of water out.

In thermodynamics, extracting an equation from a qualitative state consists of two steps: (1)

choosing a control volume v from the set of possible control volumes V, and (2) applying to that

control volume a domain principle peP, domain definition deD, or qualitative identity ieI.

The number of possible equations that can be extracted from a given qualitative state is thus

I I/× (p U D u I) I. This number can be enormous. In thermodynamics, choosing the right control

volumes is crucial to the efficient search of the equation space. For example, instantiating the

ideal gas law for a contained gas about which nothing is known introduces four new variables: the

temperature, pressure, volume and mass of the contained gas. This moves us further from the goal

of a closed set of equations.

While the qualitative model provides all possible control volumes, the subset which is actually

useful tends to be small. We have developed a heuristic technique for ordering the possibilities. The

control volumes are divided into lexicographically ordered classes using five essentially qualitative
criteria:

1. Boundary Conditions: Prefer systems which border goal flow rate quantities.

2. Geometry: Prefer systems whose boundaries are crossed by fewer flows.

3. Number of Knowns: Prefer systems containing many known quantities.

4. Boundary Homogeneity: Prefer systems where only a single type of flow (e.g., only heat flow)

crosses its boundary.

5. Internal Complezity: Prefer smaller, simpler control volumes.

In the example below, these heuristics enabled SCHISM to narrow its search to a small fraction of

the total equation space.
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4 HOW SCHISM WORKS

SCHISM is an approximately 7000 line lisp program consisting of three major parts that perform:

(1) qualitative teleology analysis of program input, (2) equation space searching, and (3) symbolic

math manipulations. It takes four inputs: (=_ the intended function of the system, (i=) an envision-

ment of the system (generated by qPE), (iis_ a set of quantitative facts and measurements of the

system, and (iv) a goal quantity.

SCHISM begins an analysis by verifying that the apparatus behaves as intended. It does this by

examining QPE's envisionment. Currently, SCHISM recognizes two classes of thermodynamic systems,

heat-engines and heat-pumps. If the expected behavior is that of a heat-engine, SCHISM checks that

some state in the envisionment satisfies the following three criteria: (1) it contains a closed MCcycle,

(2) it has a net flow of work out of the system, and (3) it transfers heat from a hotter place to

a colder place. Each of these properties can be determined directly by inspecting the qualitative

situation. This increases SCHIb'M's robustness by allowing it to detect a class of nonsense questions.

SCHISM organizes its search through the equation space as an AND/OR tree 2 with the root goal

node being to show that the goal quantity is known. To solve for the goal quantity, equations are

extracted that contain the sought quantity. Closing these equations become the subgoals of the

root. The unknown quantities in these subgoais are then sought at the next level of the tree, and

so forth. During the search, SCHISM might choose to focus on a new control volume for each sought

quantity, using the heuristics described earlier.

Once a closed set of equations containing the sought quantity is found, the equation space search

halts. The final expression for the goal quantity is found by solving the set of equations via

substitution. 8CHISM's symbolic math package includes a canonical rational function manipulator

to perform simplification of most mathematical expressions. The isolation, collection and attraction

methods of Bundy [3] are used for extracting variables from equations.

5 AN EXAMPLE

The following example is taken from [13]. In the text, Haywood introduces the steam plant shown

in figure 5 by describing its parts, structure and qualitative behavior. The steam plant consists of

a turbine, condenser, feed pump, boiler, high temperature furnace, low temperature cooling water,

and a gear box for splitting work output. Water enters the boiler at a low temperature and leaves

as high-pressure steam. In the boiler, the fluid remains at approximately constant premure while

heat flows to it from the furnace. The steam flows through the turbine, dropping in pressure and

temperature while producing work. The low temperature steam is then condensed at very nearly

constant pressure while heat is transfered to the cooling water. The condensate is then pumped

from the condenser into the boiler and the cycle repeats.

2We use an extension of the AO-SOLVEsystem described in [10].
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Figure I: A Steam Plant

The problem statement is:

I.I. In a test of a cyclic steam power plant, the measured rate of steam supply was

7.1 kg/s when the net rate of work output was 5000 kW. The feed water was supplied

to the boiler at a temperature of 38°C, and the superheated steam leaving the boiler

was at 1.4 _fN/m 2 and 300°C. Calculate the thermal efficiency of the cycle.

From a QPE envisionment, SCHISM locates a contiguous set of control volumes (labeled I in figure 5)

whose combined behavior does indeed match that of a heat engine. Since the goal quantity refers

to a heat engine, this is the initial system choice from which equations are extracted.

A commonly used heuristic in the analysis of thermodynamic flow processes is plunldng (as in [7])

of a system's mass flow rate. A plunked quantity is permitted to appear as a constant in the final

solution. The plunking of a system's mass flow rate is equivalent to basing its analysis on the

assumption of a unit mass flow rate. In this example, SCHISM infers that the closed cycle has a

mass flow rate of 7.1 kg/s since that is the given flow rate of steam entering the turbine. Because
the mass flow rate of the heat engine is known, SCHISM elects not to use the plunking heuristic.

SCHISM next initiates a search through the equation space. In our example, the control volume

heuristic guides SCHISM to consider seven systems out of a possible 64. Two of the seven systems

prove useful for extracting a set of closed equations.
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(1)
(3)
(5)
(7)

(9)
(11)
(13)
(15)
(17)
(19)

(21)
(23)

pl = El Q,./ El Wo.,

W._t = 5000

_2 nH + _:2Q + _2 w = 0

E2 Q,- = Q,-

E2 w = E2 w,. - E2 Wo.,

E2 W¢. = 0

E,(nH)_. = nsH3

Hs = Table(H, water, liquid, Ts)

n3 --- rt 1

f']'l -- n4

7'4=300

Table(H, water, liquid, 38) - 159

(2) El Wo_ = W..

(4) E1 Qin = Q,n

(6) E2 Q = E2 Q_. - E, Qo.,

(8) E2 Qo,.,= o

(10) E2-H = E2(-H)_.- E2(-H)o.t

(12) E2 Wo_ = 0

(14) E2(nH)out = n4H4

(16) H, = Table(H,water,gas,T,, P,)

(18) n4 ----7.1

(20) Ts =38

(22) P, = 1.4

(24) Table( H, water, gas, 300,1.4) = 3041

Notation: Thermodynamic symbols are defined below. Subscripts and summation indices refer to the

control volumes and locations shown in figure 5. For example, _'_-2Q denotes the sum of the heat flow rates

into and out of control volume 2 (the boiler). We use Table(H, water, gas, T4, P4) to denote the tabulated

intensive (ie., per unit mass) enthalpy value of water vapor st location 4.

Q : heat flow rate W = work rate n = mass flow rate

H : intensiveenthalpy T = temperature P = pressure

p = efficiency

Figure 2: Steam plant equations generated by SCHISM

SCHISM spawns a total of 56 equations, 24 of which form a closed set (see Figure 5). Substitution of

equations is then performed on the closed set to produce a final expression for the sought quantity:

0.244 (i.e., 24.4%) which is the correct answer.

6 DISCUSSION

We have shown how the language of QP theory is well suited for representing qualitative knowl-

edge in the domain of engineering thermodynamics, and can serve as a framework for organizing

other kinds of knowledge. The qualitative model provides four essential functions: (1) recog-

nition/verification of the system's intended behavior, (2) establishing the set of possible control

volumes, (3) heuristic guiding of the selection of control volumes in equation extraction (4) estab-

lishing the set of qualitative identities which contribute equations to the closed set.
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While we do not view SCHISM as a cognitive simulation per se, we believe that our model for

how qualitative and quantitative knowledge interact can provide a richer framework for explaining

psychological data. For example, "keywords in the [problem] statement" have been conjectured as

the basis for ignoring variables or setting their values to zero [1], which in SCHISM falls out through

qualitative analysis. Further psychological studies might reveal a novice-expert shift, with novices

using surface features and experts relying on a generative qualitative analysis [4].

At present SCHISM has been successfully tested on three examples, allfrom Chapter One of [13].

Our plan is to continue working through the textbook, seeing how much of it we can master by

augmenting the set ofequations and domain model as necessary. An interestingquestion we hope to

answer ishow large a role each kind of knowledge plays in mastering these problems. For example,

we currently suspect that the number of specialized equation-solving techniques will continue to

grow with the number of examples, while the qualitative model will stabilizemore quickly. As we

extend the range of problems SCHISM can solve,we hope to compare its performance with human

subjects.
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